5 research outputs found

    U-duality (sub-)groups and their topology

    Full text link
    We discuss some consequences of the fact that symmetry groups appearing in compactified (super-)gravity may be non-simply connected. The possibility to add fermions to a theory results in a simple criterion to decide whether a 3-dimensional coset sigma model can be interpreted as a dimensional reduction of a higher dimensional theory. Similar criteria exist for higher dimensional sigma models, though less decisive. Careful examination of the topology of symmetry groups rules out certain proposals for M-theory symmetries, which are not ruled out at the level of the algebra's. We conclude with an observation on the relation between the ``generalized holonomy'' proposal, and the actual symmetry groups resulting from E_10 and E_11 conjectures.Comment: LaTeX, 8 pages, 2 tables, 1 figure, uses IOP-style files. Contributed to the proceedings of the RTN-workshop ``The quantum structure of space-time and the geometrical nature of the fundamental interactions,'', Copenhagen, Denmark, september 200

    The topology of U-duality (sub-)groups

    Full text link
    We discuss the topology of the symmetry groups appearing in compactified (super-)gravity, and discuss two applications. First, we demonstrate that for 3 dimensional sigma models on a symmetric space G/H with G non-compact and H the maximal compact subgroup of G, the possibility of oxidation to a higher dimensional theory can immediately be deduced from the topology of H. Second, by comparing the actual symmetry groups appearing in maximal supergravities with the subgroups of SL(32,R) and Spin(32), we argue that these groups cannot serve as a local symmetry group for M-theory in a formulation of de Wit-Nicolai type.Comment: 18 pages, LaTeX, 1 figure, 2 table

    An Overview of Recent Advances in Hodge Theory

    No full text

    Strategy in Contests - An Introduction

    No full text
    corecore